China Custom Filtration Equipment Parts 9211020p Replace CZPT Gear (1092106900) (1092106800) spiral bevel gear

Product Description

Air compressor 3 filter series: air filter, oil filter, oil and gas separator
Hydraulic filter element
Air compressor precision filter element
Vacuum pump filter element
Plate and frame filter
Water filter
Various custom filtersair
Compressor spare parts fan motor, hose, O-ring, oil level gauge, shaft, gear, display, diaphragm, coupling, bearing, muffler, etc

Product Specifications

1 0571 7165 29571 0571 0 1900070007
1 0571 7178 2957107400 1900070008 19057101
157175713 2957107200 1900070099 1957171102
1 0571 7112 2957144800  1900070004 1957171103
157175711 2906044800 19057115
157158001 2957116100 19057116
157158003 2957116103  
157159571 1622365900 190057101
157159571 1622315500 190057102
157150506 1613957100 190057111 190057112
295715711 1613935680 190057112 19057114 
295715710 2901175710 190057131
2957121600 2901197400 190057171 1900520011
190057192 190057132 1900520012

1.More than 10years filter produce experience before order we can supply sample for customers confirm quality.

2. Quality Control:Every filter will be tested before dispatched.

3.Payment Items :we supply payment by Alibaba assurance order if any problem after you receive the goods,you can ask Alibaba hold our account to protect your payment.

Q1. Is the filter custom made or is OEM available?

A: Yes, of course, just offer your required sepcifications and drawings.

Q2. Can you produce products according to a given sample?
A: Yes, we can produce according to your samples or technical drawings. We can build molds and fixtures.

Q3.What’s the payment terms?
A: T/T (bank transfer) 30% as deposit, and 70% before delivery. We will show you a photo of the packaged goods before you pay the balancing cost.

Q4. What are your terms of delivery?
A: (1) FOB (2) CFR (3) Delivery terms: CIF.

Q5. How is your delivery time?
A: Generally, according to the MOQ qty, it takes 5-7 working days after receiving your advance payment. The specific delivery time depends on the model and quantity of your order.

Q6. What is your sample policy?
A: We can supply samples if we have stock, but customers need to pay for the samples cost and the courier cost first, and we will refund the samples cost on your next order.

Customized: Non-Customized
Standard Component: Standard Component
Material: Imported Raw Materials
Category: Hose
Product Name: Screw Compressor Gear
P/N1: 1092106900


Customized Request

screw gear

How do you maintain and service a screw gear system?

Maintaining and servicing a screw gear system, also known as a worm gear system, is essential to ensure its optimal performance, longevity, and reliability. Regular maintenance and proper servicing help identify and address issues before they escalate into major problems. Here’s a detailed explanation of how to maintain and service a screw gear system:

  1. Establish a Maintenance Schedule: Create a maintenance schedule for the screw gear system based on the manufacturer’s recommendations, operating conditions, and the system’s usage. The schedule should include routine inspections, lubrication, cleaning, and any other specific maintenance tasks.
  2. Visual Inspection: Regularly inspect the screw gear system visually. Check for any signs of wear, damage, misalignment, or unusual noise or vibration. Look for oil leaks, loose fasteners, or any other visible issues that may affect the performance of the system.
  3. Lubrication: Ensure that the screw gear system is properly lubricated. Monitor the lubricant level and condition regularly. Follow the manufacturer’s guidelines regarding the type of lubricant to use, the recommended viscosity, and the lubrication intervals. Replenish or replace the lubricant as necessary to maintain optimal lubrication and reduce friction.
  4. Cleaning: Keep the screw gear system clean and free from debris, dirt, or contaminants. Regularly clean the gears, shafts, and other components using appropriate cleaning methods and agents. Be careful not to damage any of the components during the cleaning process.
  5. Alignment Check: Periodically check the alignment of the screw gear system. Misalignment can lead to increased wear, reduced efficiency, and premature failure. Ensure that the worm gear and worm wheel are properly aligned axially and radially. If misalignment is detected, make the necessary adjustments to bring the gears back into proper alignment.
  6. Bearing Maintenance: If the screw gear system includes bearings, inspect and maintain them regularly. Check for any signs of wear, excessive play, or noise. Lubricate the bearings according to the manufacturer’s recommendations. Replace any worn or damaged bearings promptly.
  7. Load and Performance Testing: Periodically perform load and performance testing on the screw gear system. This helps assess its functionality, efficiency, and torque capacity. Analyze the test results and compare them to the system’s specifications. If any deviations or performance issues are identified, take appropriate measures to rectify them.
  8. Component Replacement: Over time, certain components of the screw gear system may wear out and require replacement. Keep a record of the system’s maintenance history and track the lifespan of critical components. Replace worn or damaged gears, bearings, seals, or other components as needed to ensure the system’s reliability and performance.
  9. Documentation: Maintain thorough documentation of all maintenance activities, including inspection reports, lubrication records, component replacements, and any repairs or adjustments made. This documentation helps track the system’s maintenance history, identify recurring issues, and plan future maintenance tasks.

It is important to note that the maintenance and service procedures may vary based on the specific screw gear system, its design, and the manufacturer’s recommendations. Therefore, always refer to the manufacturer’s documentation and guidelines for detailed instructions specific to the screw gear system being serviced.

screw gear

How do you calculate the efficiency of a screw gear?

Calculating the efficiency of a screw gear, also known as a worm gear, involves determining the ratio of input power to output power and considering various factors that affect the overall efficiency of the gear system. Here’s a detailed explanation of how to calculate the efficiency of a screw gear:

  1. Measure Input Power: The first step is to measure or determine the input power to the screw gear system. This can be done by measuring the torque applied to the input shaft and the rotational speed of the input shaft. The input power can then be calculated using the formula: Input Power (Pin) = Torque (Tin) × Angular Speed (ωin).
  2. Measure Output Power: Next, measure or determine the output power of the screw gear system. This can be done by measuring the torque exerted by the output shaft and the rotational speed of the output shaft. The output power can be calculated using the formula: Output Power (Pout) = Torque (Tout) × Angular Speed (ωout).
  3. Calculate Mechanical Efficiency: The mechanical efficiency of the screw gear system is calculated by dividing the output power by the input power and multiplying the result by 100 to express it as a percentage. The formula for mechanical efficiency is: Mechanical Efficiency = (Pout/Pin) × 100%.
  4. Consider Efficiency Factors: It’s important to note that the mechanical efficiency calculated in the previous step represents the ideal efficiency of the screw gear system, assuming perfect conditions. However, several factors can affect the actual efficiency of the system. These factors include friction losses, lubrication efficiency, manufacturing tolerances, and wear. To obtain a more accurate assessment of the overall efficiency, these factors should be considered and accounted for in the calculations.
  5. Account for Friction Losses: Friction losses occur in screw gear systems due to the sliding contact between the worm gear and the worm wheel. To account for friction losses, a correction factor can be applied to the calculated mechanical efficiency. This correction factor is typically determined based on empirical data or manufacturer specifications and is subtracted from the mechanical efficiency to obtain the corrected efficiency.
  6. Consider Lubrication Efficiency: Proper lubrication is essential for reducing friction and improving the efficiency of screw gear systems. In practice, the lubrication efficiency can vary depending on factors such as the type of lubricant used, the lubrication method, and the operating conditions. To account for lubrication efficiency, a lubrication factor can be applied to the corrected efficiency calculated in the previous step. This factor is typically determined based on experience or manufacturer recommendations.
  7. Include Other Efficiency Factors: Depending on the specific application and the characteristics of the screw gear system, additional efficiency factors may need to be considered. These factors can include manufacturing tolerances, gear wear, misalignment, and other losses that can affect the overall efficiency. It’s important to assess these factors and apply appropriate correction factors or adjustments to the efficiency calculation.

By following these steps and considering the various factors that affect the efficiency of a screw gear system, it is possible to calculate a more accurate estimate of the gear’s efficiency. Keep in mind that the calculated efficiency is an approximation, and actual efficiency can vary based on operating conditions, maintenance practices, and other factors specific to the gear system and application.

screw gear

Can you explain the concept of screw gear threads and their functions?

Screw gear threads play a crucial role in the operation and functionality of screw gears, also known as worm gears. The threads are an essential component of the worm, which is the cylindrical gear with a helical thread wrapped around it. Here is a detailed explanation of the concept of screw gear threads and their functions:

  • Thread Design: The threads on a screw gear, specifically the helical thread on the worm, are designed in a helical shape, resembling the threads of a screw. The helical thread is wrapped around the cylindrical body of the worm, creating a continuous spiral path along its length. The pitch of the thread refers to the distance between successive thread crests or valleys.
  • Meshing with Worm Wheel: The primary function of the screw gear threads is to mesh with the teeth of the worm wheel. The helical thread of the worm engages with the teeth of the worm wheel, creating a sliding contact between them. As the worm rotates, the helical thread drives the rotation of the worm wheel, transmitting rotational motion and power.
  • Gear Reduction and Torque Multiplication: The helical design of the screw gear threads allows for a large number of teeth on the worm wheel to be engaged at any given time. This results in a high gear reduction ratio, meaning that for each revolution of the worm, the worm wheel rotates by a smaller fraction. The gear reduction ratio enables torque multiplication, making screw gears suitable for applications requiring high torque output.
  • Precision Positioning: Screw gear threads are crucial for achieving precise positioning in applications where accuracy is essential. The fine pitch of the helical thread allows for small incremental movements, enabling precise control over the rotation of the worm wheel. This feature is particularly advantageous in applications such as robotics, where accurate positioning and motion control are necessary.
  • Self-Locking Action: The helical thread design of screw gears gives them a self-locking capability. When the worm is not rotating, the friction between the helical thread and the teeth of the worm wheel tends to hold the gear system in place. This self-locking action prevents the worm wheel from backdriving the worm, providing inherent braking or locking functionality. It ensures that the gear mechanism maintains its position without the need for additional braking or locking mechanisms.
  • Efficiency and Lubrication: The sliding action between the screw gear threads and the teeth of the worm wheel introduces more friction compared to other types of gears with rolling motion. This sliding motion affects the efficiency of the gear mechanism, resulting in higher energy losses and heat generation. Proper lubrication with appropriate lubricants is essential to minimize wear, reduce friction, and improve the overall efficiency of the screw gears.

Overall, screw gear threads enable the meshing and transmission of rotational motion and power between the worm and the worm wheel. They facilitate gear reduction, torque multiplication, precise positioning, and self-locking action. Understanding the design and functions of screw gear threads is crucial for utilizing screw gears effectively in various applications.

China Custom Filtration Equipment Parts 9211020p Replace CZPT Gear (1092106900) (1092106800) spiral bevel gearChina Custom Filtration Equipment Parts 9211020p Replace CZPT Gear (1092106900) (1092106800) spiral bevel gear
editor by CX 2023-10-30